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VI. On the pear-shaped Figure of Equilibrium of a Rotating Mass of
Laquad.

By G. H. Darwin, F.R.S., Plumian Professor and Fellow of Trinity College,
Cambridge.

Received October 21,—Read November 21, 1901.

INTRODUCTION.

Turs is the sequel to a previous paper on “ Ellipsoidal Harmonic Analysis” (¢ Phil.
Trans..,” A, vol. 197, pp. 461-557). I here make use of the methods of that paper,
and for brevity shall refer to it as “ Harmonics.”

The sections 1 to 4 are preparatory, and might have been included in ¢ Harmonics,”
but seem more appropriate here. Section 5 is an independent investigation of so
much of M. Porncarf’s celebrated memoir on rotating liquid® as relates to the
immediate object in view.

It is not necessary to say more here, since I give a short summary in the last
section.

§ 1. The Hormonics of the Third Degree.

It was remarked in § 7 of “ Harmonics” that this group of harmonics may be
determined in rigorous algebraic form ; I now proceed to do this.

The requisite formulee are contained in § 6 of “ Harmonics,” and I take the several
harmonics in succession. Throughout this section we have, of course, ¢ = 3.

s =0; type OEC, and Py(v) = qoPs(v) 4 B Ps*(v), with ¢, = 1.
The equation for Bo is

_ {31} {32} 158°
Bo = 4 + Bo T 14 480

(B)? =1 +158,
the proper solution of the quadratic equation is

Bo = 2(B, — 1).

If we write

* ¢ Acta Mathematica,” vol. 7, 1885.
(305.) 17.3.1902,
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302 PROFESSOR G. H. DARWIN ON THE PEAR-SHAPED FIGURE

Also
qa __ 1

1
o 44+ B 2B+ 1)

with ¢, = 1.

Then since
P3(V) = %Vg - %V, P'))z ot ]_51) (1)2 I 1),
we find
— _1_ — .  — Bl \
PO =B =14 (P srg) )

9 _ 148
v =

_ 148
s=1; type 00C, and Psl(”) = ’\/’;,“9‘“: ‘1"/‘3 (Qlfpz;]' (v) + Bqs P (") )» with ¢," = 1.
The equation for Bo is
— 83,2} {3, 3}

1 —
BO’+2358-4-— 8"‘!'60' B
| .JT’)BEZ
or | BO‘ -I'- GB = i):ﬁ-l;ﬁzlﬁa‘ .

If we write

(By)) =1 —48(1 — B),
the proper solution of the quadratic equation is
Bo = 4—.(32—— 1 - 7?6)

2q, 1 1 s’ s . ,
— = e and = 3%  with ¢, = 1.
N 8+ B0 4B+ 1-—48) 7 * TG

Also

Then since Py! (v) = & (50* — 1) (¥ — 1), PP (») = 15(»* —~ 1) (»* — 1)}, we find

6 f . 148/, 3—B—2B )
wngww¢+wwnﬁ;@@wwm_m)...m

s =1, type O0S and P! (v) = ¢. P (v) + By (v), with ¢y = 1.
The equation for Bo is
67{3, 2} {3, 3}

-1 4o
Bo—1B.8.4 = 8+ o

A comparison with the last case shows that we have only to change the sign of §;
accordingly if
(B)=1+3B(1+ B),
we have Bo =4 (B — 1+ 48).

20 _ 1

C= i a gy Withg = L
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On substitution we find

_ 2, L L e 3+ 8 — 25
Psi() = 3 (Bs — 1 4+ 3B) (v* — 1) <V2 — T(l_jﬁj‘> SRR (3).

s =2; type OEC, 15 (») = BqyPs (v) + ¢ P5* (v), with ¢, = 1.
The equation for Bo is
_ TIP3 18,20 — 1587
Bo = 4—Bo T 1—18c"

We have already defined (B,)? as 1 4 158% and find the proper solution of the
quadratic equation to be
Bo = —2(B, — 1).

Also
29, _ — 43,1} (3,2} _ —4(B —1)

Qz— 4 — Bo s -

With the known values of P; and of P* we find

with ¢, = 1.

B2 6) =2 (1498 = B)w(— L E) (®),

A comparison with (1) for s = 0 shows that the last factors in each only differ in
the sign of B,

: 2 1B
s=2; type OES, P?(v) = /\/ %ffé . Py (v).

Since P,* (v) = 15v (»* — 1), we have at once

9 ; L+ B\
Pﬂnxwﬂw—thﬁj@... L (5)
g __ 148 ‘ .
s=3; type 00C, PP ) = A/” 7150 [Bg/ P o) + /P ()] with ) = 1.
v — 1
The equation for Bo is
_—iFB a8 18

o= 8§8—Br—68 — 8—fBo—68"
We have already defined | |
(B =1 =48 (1 —B),
and find for the proper solution
Bo=4(1 — 4B — By
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304 PROFESSOR G. . DARWIN ON THE PEAR-SHAPED FIGURE
Also
%=;%%%%~—;< —1+3B),
and , L, -, with ¢,/
qs 3

Whence on substitution

P33(y)=29(1_32)<,ﬂ—§jg> <y*‘:(f+°>f)‘> ()

s=3; 008, P2 (v) = Bq, L5t (v) + ¢ P3® (v), with ¢, = 1.

The equation for Bo is

_ =83, 2} {3, 8}
o = 8 — o + 68

We may derive the result from the last case by introducing
(By)' = 143B(1 + B),
and changing the sign of 8, so that
Bo=4(1+36— By,

2 16 :
g—le =—5 (B; — 1 — £RB), with ¢, = 1.

‘Whence on substitution

PO =" BB — 1y (=" ),

The forms of the corresponding functions of u are the same, except that (1 — u?)

1+8 L\ . ,
and -8~ replace the corresponding factors.

I'have not determined the cosine- and sine-functions, because they may be written
down at once from the results already obtained. The three roots of the fundamental

2

cubic are »?, u? and — >, Hence we have only to replace »* by this last

function in the seven formule (1)—(7) in order to obtain functions proportional to
the seven cosine- and sine-functions. If the definition of the latter functions is to
agree with that given in “ Harmonics,” the factors must be determined appropriately,
but the question as to the value of the factor will not arise here.
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§ 2. Change of Notation.

It will be convenient, with a view to future work, to change the notation, and I
desire to adopt a notation which shall not only agree in the main with that used
in “ Harmonies,” but shall also facilitate reference to a prevmus paper on JACOBI'S
ellipsoid (‘ Roy. Soe. Proc.,” vol. 41, pp. 8319-336).

I write

i —— pA— — K2

It may be noted that what I here write ¥ was denoted by «" in ““ Harmonics,” and
vice versd.

I have in general written the current co-ordinates v, u, ¢, and the ellipsoid of
reference v, so that the squares of the semi-axes are

k? <1/02 - i j g> , Bt —1), Pyl

I now propose to write as the squares of three semi-axes of the ellipsoid of

reference
costy, (1 —r¥sin’y), A

Jomparing these two we see that

. 1
k= cksinvy, and vy = ——.
K sin
For the current co-ordinates I retain ¢ and write
1 .
= — = sin 0.
K sin A’ *

The three roots of the fundamental cubie are therefore

1 . 1— /
—, w=gin’d, L= Beos2p (1 — k2 cos’ ).
lC

18

The rectangular co-ordinates x, ¥, z are therefore now expressible as follows :-—

csiny y
= g O Y (1 — k?sin® 0) cos ¢,
csiney .
y=—_ (1 —w*sin®¢) cos fsing, . . . . . . (8)
_ csing R
il sin @ (1 — «®cos® )

VOIL., CXCVIIT.—A, 2R
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306 PROFESSOR G. II. DARWIN ON THE PEAR-SHAPED FIGURE

These give

a? : ? sin?
A ,%7 Y PR e
cos® Y © 1 ~— k?sin’ sin?
At the surface § =y, and we have
22 ,q2
T =t
cos? y + 1 — «*sin®ey +

In the formulee for the third harmonies, in every case but one, and in two out of
the five harmonics of the second degree, there occurs a factor of the form (#* — con-
stant) ; in each such case I write that constant in the form ¢%/k®, and ¢? =1 — ¢~
Thus ¢ will have a different value for each harmonie. '

It has been already remarked that for most purposes it is immaterial by what
constants the several functions are multiplied.  Although it would be easy to
determine the constant in each case so as to make the function agree with its value as
defined in “ Harmonics,” yet I shall not take that course, and shall omit factors as
being in most cases redundant.

For the sake of completeness I will give the first and second harmonics in the new
notation, as well as the third.

Since the harmonics of the first degree are expressed by

BO)=r PI)=(= T PIO=6 1),

¥
\

it is clear that in the new notation

1 1 — &% sin® )
o) =G P, (v) = cot ¢, o) =" ‘;fijg;:@;
Py (1) = sin, Pl ()= (1= sin® ), 3! () = cosf. )

Ci () = (1 — k¥ cos b}, €} () = cos o, 8,1 () = sing

It appears from § 12 of “ Harmonies” that

24 7 e
P.v)=»"+ e P (v) =»* + W
')' B — 2 ’y/ -B + 2 5) b)
where L= S == T 0 and B =14 387
@ 31 -8 o 31— ‘ + 38

In accordance with the notation suggested above, let
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. . 1 — &%, L
Then substituting 14 e for B, we find
A4 K~

0= YL+ F (1= )]

and for both cases

2 — 3¢°
2 — 2 /
K> = q 2"

Hence
P, (v) and P (v) = ]::sgﬂi:;lw’
e () and B2 (w) = — (1 — s 0), | . (10),
g wd €2 () =1~ "Toeop |

¢ B 2 e 3 : o o “ 9 79\1 . .
where x* = ¢* 1= 2; ,and ¢* = §[1 4+ «* F (1 — «’?)*], with upper sign for the

first and the lower sign for the second. hd

It appears from (19) and (20), § 7, of “ Harmonics” that

cos Yr
P, (v) = sin? 4 ? ‘
P,! (r) = sin (1 — «?sin® 0), coee (),

021 (¢)) = CO0S (i)(]_ — K’2 COSQ ‘d))}
and from (21) and (22) that

() = L esin?y)t )
P () = sin® 4 ’
.- . A €5:9)
P,' (n) = sinbcos b, ‘
S,! (¢) = sing (1 — «?cos” ) J
Lastly, from (25) and (26)
2(y) = WA — sy
Py () = sin® ’
(13).

P,? (1) = cos (1 — k*sin? 0}, ,
$2(4) = sindheos )

Turning to the harmonies of the third degree, we found that in the two cases where

the type 18 OLEC,
43 B0

BO) and PR @)= v (v = S )
2R 2
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. 4 4T B .
If we put fomm — = we find
! @ 5(1—8)
P =30+ R F (1= 1 Y],

. 4 — b¢g?
. 2 2 -
and CEC 3y

Therefore, with the above alternative form for ¢?
1 — g sin’ )
9 () — TSIy
P; (v) and P (v) = sinfap

7

P, (r) and Pg? (u) = — sin 9<1 e ’fgsing 0) g )

C,(¢) and G (¢) = (J - s;cos? (/)) (1 — ' cos® p)*

Again in the two cases where the type 1s OOC we found

; . S =R F 2B\ /. 1 AV
P, (v) and Py (v) = ( 3 w?(%}}j) ( p o hh ).

¢ 83— BF 28,

Pt P _ 3= BT 2,

Putting - T

we fnd £ H( 2 F (1= 4,
9 — B2

and K = ¢° T:%ZE

Therefore, with the above alternative form for ¢?

cos Y (L — ¢ sin® )
Py (#) and Py () = V0" 0 ),

Py (1) and P () = — (1= esin® ) (1 — * i 9),

&' ($) and €° (p) = cos ¢ <1 - '{;: cos® )

In the two cases where the type is OOS we found

S+ BF 28\, , T\
B, () and 37 0) = (7 = 21 70 00 = 1)
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Putti ¢ _ 8+ BF 2B
Putting 6= B1=p)
we find ¢ =12+ & F (4 — k),
4 — bg?
. 2 — 2T,
«M‘ld K=1q 1 — 24

Therefore, with the above alternative form for ¢

3 1 - «®sin® )t (1 — 2 sin®
P (y) and 3Ps° (,,) — ( K S0 \211(\1, ¢ sin® ) ’
Pt (p) and P? (n) = — cos b (1 — :j in? ,9) 7 T
\ q
8 (¢) and &°(¢) = sin¢ <1 B :,7,5) cos® ‘f)) J

The seventh of these harmonics, which is of type OES, stands by itsell. We
had

P P ALY B l"’ i
P? () =v(*— 1) <”~ - f.:g) '

This gives in the new notation

cos Y (1 — Ksin )t | \
P32 (V) = sin®
ng(ﬂ) = sin # cos 0(1 R 0);, o (17).

Sy* (¢) = sindp cos ¢ (1 — «™ cos* $)*

The formule (9) to (17) give the fifteen sets of three functions constituting the
fifteen harmonic functions of the first three degrees. It would be easy, although
somewhat tedious, to find the coefficient by which each function is to be multiplied so
that its definition may agree with that of the previous paper.

§ 8. Euxpressions jfor the Solvd Harmonics en Rectangulor Co-ordinates.

. . . . 1 - 2 . '
The three roots of the original cubic equation were »?, p?, 1—Beoszg , and In the

1-8

new notation the three roots of

B 3 2
N // ~ e

B2 . 1 . 1

D9 D O
+ + — = ¢** si* are  ———— , sin* 0, T,
w* — 1/ o — 1 w” L K sin? e’ ’ «?
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310 PROFESSOR . . DARWIN ON THE PEAR-SHAPED FIGURE
Hence it follows that we have the identity

e 2 P 0 o+ 4 0o g (b — o?) (sin®f — w’z)(»x:%ﬁ‘ﬂ — ")

1 ?/ o )
R e CRKCSINT Y D= CTKT SINT Yy Sy e K
w0 — 1/’ + 0 -1 + w* v 14 (1/8* — o) (1 — o*) »°

9

Putting o* =

a;s\ﬂ_

<) o3 ) 2 3 9 3y

ST e sinfy= . o sin’ y — (L —g?sin® ) (1 — /;:’ sin® ) (1 — ’;,3 cos® ).

AT eIp T (" = ) sin*

This expression, together with those for x, 7, z in (8), enables us to write down the
results at once. As before, 1 drop the several factors as being redundant for most
purposes.

From (9)

PP (WCi(P) =2, PP € () ==, PP (W& (D) =y
18).
From (10) (8)
P ()P (1) €, () and P? () W' () €7 (d) = ¢ "““: Y=g

+ Q% sty . (19),

2 —
where ¢ =514 & F (1 — )], and & = (] — ‘;’/
2,72
so that ' ;j] = 1—2¢".
K™ =~

From (11), (12), and (13)
P,' () Py (1) G (4) = w2, By (0) B! (1) Sit (6) = w2, Py () Py () 8 (¢) =
From (14)
P, () By (1) Cs () and B () B (0) O () = = (e + L7y —
+ G sinty) L (21),

0 ; . o . . 54— 5P
where =30+ F Q=7+ Y], and w=g" 4;'2- ,
¢ .
o t ; — 3 — 407,
so that ) 3 q

From (15)
Pyt (v) Pyt () €' (¢) and P2 (v) PP (1) € () = w (¢ + '7)1/:‘ Y=g
+ Fggsin?y) L (22),
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: 9
where FP=30142F (1 —®+ 4«*)}), and K =¢*7 T ;;/‘2 ,
‘ Vi A
so that m = 1— 4q°.
From (16)

Bs' ) W' (p) &' (4) and B.° (v) W° (w) £ ($) = v (°2° + fq“ p U1

+ ¢*q q’3 sin?y) . (23),
where P=124+F @ - and & =¢? ;.L_EZZ ,
so that : ,((Ijﬁ%o =1(1—2¢).
Lastly, from (17),
P2) PR (n) S (d) =ayz . . . . . . . . (24)

It is easy to verify that each of these expressions satisfies LAPLACE'S equation.
y Yy I

§ 4. The Expression jfor the Q-functions in Elliptic Integrals.

In this paper I drop the factors € and E which were found to be necessary when
the Q-functions were expressed in series.
We make the following definition :—

dy

P (VO) Q/ (VO) = [§8; (VO)] L‘ [ ()] (@ = D (p? — L ,)- ’ '

and a similar formula holds for P; Q;.
Tt is clear that 337 may be multiplied by any constant factor without changing
the result ; hence we may use the forms which have been found in §§ 2, 3.
The notation must now be changed.
1

1 . .
We have v= ——andy,= P Therefore, when 4 is adopted as variable,
unjr K 8in vy :

the limits are y to 0, and the sign of the whole is changed.

e m - S
and 9 v 1+ B\ cosy (1 — Psin )t
(= 1) <y 1 — ,8) - K sin® 4
Therefore ]’ c dv — J’ v dy
W (0 — D (P — e o (1 = K sin? )t
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312 PROFESSOR G. H. DARWIN ON THE PEAR-SHAPED FIGURE
In accordance with the usage in elliptic integrals, I write
A =1 — k*sin® s

under the integral sign, or 1 — «?sin®y outside the integral.
I shall also for brevity write

AP =1—¢*sin

under the integral, or 1 — ¢?sin®y outside the integral.
We have then

dy
2 | S
39 (VO)@ (Vﬂ) - KHQ (VO)] f HB (MNP A )
T apply this formula successively to the several functions, as given in (9) to (17),
and introduce the abridged notation just defined, but I do not reiterate the special

meanings to be attached to the symbol ¢ in each case.
Since P, (v) = 1, we have (dropping the now unnecessary suffix 0),

P @, 6) =« | Y,
P, ()@, () = © ”v sin® A ’

g ), A
P Q1 0) = kot | 5 ¥y,

nEe )= éﬁ; (: e .

Pa(v) @, (v) and W(v) @) =50 [T,

P Q! 0) =" ﬁ(?fw T
P (0) @) = Av [ 3 . o

: 5 /ccos A~ Y s1n
P2 @) Q) =" 1 Y.

0.0) @,0) md D26) @2 6) = “5 [T ¥ ay,

sinf o

P() Qi) and PR(y) Q3(n) = “XrA [y,

sinfy  Jgcos® YA 'A
A HAP [V s
B () @'0) and B6) @5°6) =" [ Tk v

\ o #Cos? yA? r sinfyr
PS (V> ®3 - Sjnﬁr}/ cos® A’ d‘[}
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All these integrals are expressible in terms of the elliptic integrals

F:(:%, E:[;Adl,b, II = ﬁf},’;

It will, however, be found that in fact the coefficient of IT vanishes in every case.
The cases of ¢ = 0 and © = 1 are very simple, and we have

390@0'—':"}’7’
1 I
Q@ ="""_<_F'—;§E),
/

sin® oy \ #?
P.'!Q.! = «cot?y ( Atany — '1- E> ,

kA?

1 1 . = o o+ Slll ’y GOS ry
131 @’1 - Sillgfy< F+ ,) I’)“E ,2A \

It is possible by direct differentiation to verify the following results, although the
verification will be found pretty tedious.

rln ¥ dy = =3¢ — (1 — 2¢%) 2% — 1 1 “Asinrcosyr

A ) U o U ey T 0o = pad
:ciﬁw Ay = — 1F p E+ - A tan

smi l\,ll —_ipy % 7’;3 B — smlc ;t /(ioASmp ’

;&%A% iy = ,;;;* - 1‘,;;%716 I+ mtiz [2 = (L 4 &%) sin® ]

These are all the integrals needed for the harmonics of the second degree. In the
case of the first we have

Thus the coefficient of II vanishes and the results are

Po(r) @ (v) and P2 (v) @ () = 5= [

1—2¢ 1 — 2¢ (1 — 2¢°)Asinegycosy
sint o ’

29" 29'" 2% AP

Py () Qi ) = "4 | -

1
sint P A tan y:] ’

A? R | - i s
P, ()@2()____,4[_11, %%E-—Sm“’_”ﬂ],

sint ey K Pl 26 A

2 keofyA [T 1 o 1 + K tan g (2 — (1 + &%) sin’y)
P () Q) =0 | ol — B+ G .

In the first of these ¢ = 4[1 4+ «* F (1 — «%*)!] and «*=gq f - 29 .
e

VOI, OXCVIIT,—A, 28
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314 PROFESSOR G. H. DARWIN ON THE PEAR-SHAPED FIGURE

The following integrals may also be verified by differentiation :

sin® 4 4 —5¢*) — (3 — 4¢°) 2¢%"” + £ (3 — 4¢°) ) € (3 — 20%) — 2¢%7 o,
[ ASA b = 25 (& — ¢°) T+ 267" TR )

A sin fr cos
+ 2% (K — ) A2 (26),
sinfy (1 —4¢%) — (2 — 5¢%) =1, 14+2/ =24+ 1)
= T T T ° F— - i
[ cos® YA A dp = 2¢%"™ (k* — ¢*) H + ‘)Q 4 e 260% (1 ~ o) I

Atan A sinr cos

/9,//;5' ZQI[(K j‘j—_&i ' (27)’

2¢°07 + 1
2" (1 — )

{ sinty W= (=27 — @A =5¢) o 2007 = ~2¢) +

AfAP 2047 (€ — ¢*) 267" (£ — %)
sinar cos 4 A sin A cos e (28)
e = PN T 2 (e = ppag

16 2 U1 — k2’2 si A tar
fj}gwﬂcll];:?—wlﬁ*ﬁ'— (1 /c/c)E_l_sm«[feon{r A tan A L (29)

e’ P KA Kt

Now in (26) we have to put

— 5g?
@ __ 2
x 1 3 — 44>’
9 9 2 — (,-'(]g
n (27) K” = q~ T:Z}f’
: L4 — b
and in (28) K= q? 1_1.9%

Introducing these values, and taking the integrals between the limits y and 0, we
find :

TP =1 25 -1
ngq ' 2e’qtq

(4¢* — 1) Asin ycos ry}

195@5 and 3332@5 - Smﬁ { v+ ngug/m Af’
(30).

| 30).5— KCos" YA 4" — 1 1—5¢ = 2¢"
P31Q31 &nd P3 Q3 —_— Sin6 v 2{Z¢Q/4E + :)K/291Q/4
1 =74 — (1 — 5¢% - 2¢*) sin? o\ A tan ¢ (31)
"" 22 A2 . .
. AAR (1 =22 —3¢") ,, , 2—11¢* q
gy 1 3m 8 5 / ' R Tedl ]
P,'@Q;' and P°A° = sinﬁry{ 61" B+ 6%

1—5g2 + 6¢* — (2 — 11¢%) sin® o\ sin « cos )
- i ) . (32).
6u2qty" AAP
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P39Q32 = t cos? 'yAz{v]‘ + «? F 2(1 — Kg_"j} E

sind v wi'? wtk

1+ # — (1 + «*)sin® 5\ tan v}
_|_< > A 69

/CQIC%
9 ar 2 7,9 1 A\F o _ o4 —5¢
I (30) ¢=3[1+FA-3+u)]  L=¢5 5
2 1 2 2 4\ 4 9 02 = 5¢°
In (81) ¢ =g[1+4+2¢F (1 —*+ 4], « =T Ty
In (32) ¢* = L2+ & F (4 — )] PERES. Sl
i (Z T 5L 5 [ 1__‘2{12.

§ 5. Bifurcation of Jacobi's Ellipsoid.

If a mass of liquid be rotating like a rigid body about an axis, @, with uniform
angular velocity o, the determination of the figure of equilibrium may be treated as a
statical problem, if the mass be subjected to a potential tw?*(y® + 2%).

The energy lost in the concentration of a body from a condition of infinite disper-
sion is equal to the potential of the body in its final configuration at the position of
each molecule, multiplied by the mass of the molecule and summed throughout
the body. In the proposed system, as rendered a statical one, it is necessary to add
30 (y? + 2%) to the gravitation potential before making the summation. If 4 denotes
the moment of inertia of the body about @, this latter portion of the sum is $4e? and
is therefore the kinetic energy of the system.

If dm,, dm, denote any pair of molecules and D,, the distance between them, and
I the energy lost, we have

E=1 rlmll) img_ + Ao

If the system had been considered as a dynamical one, the expression for the
energy of the system, say U, would have resembled that for £, but the former of
these terms would have presented itself with a negative sign.

It is clear that the variation of }4* when the moment of momentum is kept
constant, is equal and opposite to the variation of the same function when the
angular velocity is kept constant. v

The condition for a figure of equilibrium is that U shall be stationary for constant
moment of momentum, or % stationary for constant e, in both cases subject to the
condition of constancy of volume. The variations in question lead to identical results,
and I shall proceed from the variation of F.

282
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316 PROFESSOR G. H. DARWIN ON THE PEAR-SHAPED FIGURE
’ du
It V= L (0 + @) (u + PP (u + PP

the internal potential of an ellipsoid of mass M and semi-axes a, b, ¢ is

; AT AT 200
M[\I’—I— b db + ¢ de
Hence
dm.dm. ® w d¥
.l, —— 1 3~ - 34 -
2! D, BMJ’O [‘I’ ol Pl ] dm.

Now if 4, B, C denote the principal moments of inertia of the ellipsoid about
x, Y, %,

H

L2
tMa

2

fmdm—-l((]-{—B 4)

and similar formule hold for the two other axes.
Therefore

dm.dm, . dr v
[P = g v g (a0 4 oG]
12

de

But since ¥ is a homogeneous function of degree — 1 in a, b, ¢, the sum of the
three differential terms is equal to — W.  Hence this expression is equal to 33;M*¥.
Since

Ldo® = 15 M (1 + ) o

29)

we have =M [\I’ + - ,_;[6 2}

If E be varied, whilst «bc and o are constant, it is stationary if

™ 50 +(‘”’ >Sb+<c X )sc—o

B

Eliminating &a, 8b, 6c we have the well-known conditions for Jacosr's ellipsoid

20°)? v dw

S =%

2% aw aw

W—-—a?lzl C‘C'Zc‘, o s e e (34)
LA a1 av | aw
P\ T %) T @ \\ da C )
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If we add together the first two of these, and avail ourselves of the property that
V¥ is homogeneous of degree — 1, we easily prove that the stationary value of / is

E= A%Mz[\rr +a ‘N]

Since the potential of the ellipsoid must satisfy PoissoN’s equation

A 2
ada + bdb e T abe’
Also
ad A\l ay
a—\I—’-{—bc— c— = — P,

da de de

By means of these and two out of the three equations (34), we may eliminate the
differentials of ¥, and writing p for the density find

o Wbo< T +“>_6 N C1)

2 Q 9
" <b~+c><;a+bzr+—g)—

I do not happen to have seen this form for the anorular velocity of Jacosr’s ellipsoid
in any book. :
It 1s easy also to show that the stationary value of £ may be written

1 1 1 b +
2 - o . — —
=2 M2 [(b C)<w‘3+ b"+ ) 4]\1, 2 abe
— 20*
(l)2 + 02) < “2 + b2 + >
We may now express the potential, say V, of the system entirely in terms of ¥
and « i for

da ’

2 AV g AV 200
3SM AN el
V=1 [\I"’" +b2<ada 3M>

avr T
= 4M [\If-l—cc <~+Z~’+:3>]

We thus verify that V' is constant over the surface of the ellipsoid.

A 2w?c?
(a;{c;,—-..gﬂ >] '2'(” (./ +2’2)

Let ¢ denote the value of gravity at the surface. Then it di be an element of the

LV .
outward normal, g = — i-h; Since

A O A -
dn = @’ dn T B’ dn @’
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318 PROFESSOR G. H. DARWIN ON THE PEAR-SHAPED FIGURE
1 oyt AR
where /[;9 = (L‘ + n --I— e
= —3ya™ ('J” AT N SN 4
g=—3Ma da £ \at + bt + 04) =Ty Y

Now change the notation and write

ﬁ:ﬁ@“ﬁ%@»w=wﬁmn;&=m&

w ==k (v* — »?).

2% dy
Then V= “f v
)

oY 2, 1+/3§ b
da T R\ T 1= g) ) (0 By (e —

o M) =1 P = (- 0

nd ) @) = [ COP [ gy ey

D]

so that ¥ = %3}30 (vo) @, (v)
OZ\I’
@ = P (v,) @it (v) Co e (36).
3SM
and 9= 2;7’ P Y (v) Ql (7o)

We may note in passing that the condition for a Jacobian ellipsoid (the last
equation of (34) ) is reducible to the form

KA J‘ Y sm‘»‘\[f

sinty

5, (7t
dyp = k cot®y jro A dys.

0
On examining the series of functions given in (25), we see that it may be written

£ (Vo) Q,' (Vu) = P1'(») Ql1 ()o-

This agrees with M. PoINGARE'S equation (1) on p. 341 of his memoir.

We will now suppose that the body, instead of being an ellipsoid, is an ellipsoidal
harmoni¢ deformation of an ellipsoid, which is itself a figure of equilibrium for
rotation .

The addition to / will consist of three parts; first that due to the mutual
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energy of the layer of deformation; secondly that due to the ellipsoid and the
layer ; thirdly that due to the change in the moment of inertia.

If a subscript ! denotes integration throughout the space occupied by the layer,
U the potential of the ellipsoid, and dv an element of volume,

dmvdamy

SH =1 [ o [ Updo + $o L(yg + 22) pdv.

If £ denotes the thickness of the layer standing on the element do, the first
of these terms is 4p? j‘ }’ _é}_é%ﬁf_lgz .
12

The value of U + 4o (i* + 27) throughout the layer is equal to V, — g{, where
V, is the constant value of U+ 40® (3 + 2°) over the surface of the ellipsoid, and
{’ is the distance measured along the normal to the element d{'do of volume.

Hence g Updo+ %“’2_{ (y* + %) pdv = ”gp(Vo — gl d{do.
1 L 0

Since V, is constant and the total mass of the layer is zero, this is equal to

— 3p [g0 dor.
It follows that

o | 54 3

The axes of the ellipsoid have been chosen so as to make our original £
stationary, and the further condition to be satisfied is that 6/ shall be stationary.
Let us suppose that

f=peid; (n) € ($),

which 'expression’shall be deemed to include any one of the other types of harmonie.
Then it is shown in (51) of “ Harmonics” that the potential of this layer at the
surface of the ellipsoid is

%{Kl@ P (v0) @ (vo) B (1) €5 ().

Since the mass of an element is pep Pif (1) &7 (¢) do, we have

9 1 chaldd° ]‘[ s S S P
bt [ B = 450 0 () @7 () | [ () €2 ()P i

With the value of ¢ found in (36)

bp [ apdo = 3 22 P () Qu () [ 0 () € (9)F pio
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s Mp B () i () (0 @5 (Y2
38 =~ 1" P )Q1 ) [1 = 51 G0 | [ () € (T it

In order that the new figure may be one of equilibrium, this expression must oe
stationary for variations of e. It follows that we must either have e = 0, which
leads back to Jacosr's ellipsoid, or else

1 — Pir () Be(wy) _
' P () Q)" (v0)

This last condition is what M. PoiNcarE calls the vanishing of a coefficient of
stability.®* It shows that if », and B satisfy not only the condition for the Jacobian
ellipsoid, namely, 1, (v,) @' (v,) = P,' (v,) Q,' (v,), but also this equation, we have
arrived at a figure which belongs at the same time to two series, and there is a
bifurcation at this point. The form of the figure is found by attributing to e any
arbitrary but small value.

0.

§ 6. The Properties of the Successive Coefficients of Stability.

Corresponding to each harmonic deformation of the ellipsoid, there is a coefficient
of stability of one of the two forms

P @iy P 00) Qi ()
Pt (vg) Q! () ‘ Pyt () Q' (v)

These coefficients may be written I or K, according to an easily intelligible
notation. The Jacobian ellipsoid is defined by »,, and the question arises as to the
possibility of the vanishing of the several ’s as v, gradually diminishes from infinity,
that is to say, as the ellipsoid lengthens.

“An harmonic of the first order merely denotes a shift of the centre of inertia
along one of the three axes; one of the second order denotes a change of ellipticity
of the ellipsoid. Since we must keep the centre of inertia at the origin, and since
the ellipticity is determined by the consideration that the ellipsoid is a Jacobian,
these harmonics need not be considered, and we may begin with those of the
third order.

I shall not attempt to follow M. Poincari in his masterly discussion of the pro-
perties of the coefficients of stability, but will merely restate in my own notation
the principal conclusions at which he has arrived.

* ¢ Acta Math.,’ vol. 7, 1885, p. 321, The factors § and 1/2n + 1 (or1/2i + 1, if ¢ is the degree of
the harmonic) which occur in his form of the condition are included in my functions.
T Sections 10 and 12 of his memoir. I have to thank him for saving me from making a serious mistake

in this portion of my work,
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1st. The equation

Pl () Qi' (v) — P () @7 (») or P (») Qi (v) = 0, (1> 2)

is not satisfied by any value of » between 1 and infinity, if ;] or P; is divisible by

<v2—— }-—_—t—g) It appears from the forms of the functions as given in §4 of

“ Harmonies ” that the P functions are so divisible. These functions appertain to
the types EES, OOC, OES, EOC, and therefore the ellipsoid cannot bifurcate into
deformations of these types.

2nd. The equation has no solution if {9; is divisible by (»* — 1)®. We again see
from § 4 of * Harmonics” that 97 is so divisible if it is of the types OOS, EOS.
Hence the ellipsoid cannot bifurcate into these types. The only types remaining
are EEC, OEC.

3rd. The equation has no solution if any of the roots of 7 (v) = 0 lie outside the
limits 4+ 1 to — 1. The only 33, of the types EEC, OEC which has all its roots inside
the limits 4 1 to — 1 is the zonal harmonic for which s = 0.

Hence the ellipsoid can only bifurcate into a zonal harmonic.

4th. The equation

Pll Ql’l' —-Pa@Q=0 (7' > 2)

must have a solution between 1 and infinity for all values of <.

1t follows from these four propositions that the Jacobian ellipsoid is stable for all
deformations except the zonal ones, and that as it lengthens it must at successive
stages bifurcate into each and all the zonal deformations.

5th. As the ellipsoid lengthens, the first coefficient of stability to vanish is that
of the third zonal harmonic. This stage is the end of the stability of the Jacobian
ellipsoids, and there is almost certainly exchange of stability with the pear-shaped
figure defined by this harmonic.
~ 6th. Tt has not been rigorously proved that there is only one solution of the
equation %; = 0 even in the case where 1 = 3, but M. PoiNcARE believes that this
is almost certainly the case.

7th. The functions

EE (qu) 1 P/ (V) 137:”" (V) } y 13{)&%)}
P <v0>JL v>f P/ (v).

have always the same sign as v increases from », to infinity, provided that s and ¢
are both greater than zero, and 7 greater than 2.

The seventh of the preceding propositions renders it easy to determine the relative
magnitudes of all the %’s belonging to a single degree 7.

In what follows I may take the symbols 33, @ as including also P, Q.

VOL. CXCVIIT,—A, 2T
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39292 PROFESSOR G. H. DARWIN ON THE PEAR SHAPED FIGURE
Now K> = <K' as,

P (vo) QF (vy) — P () @ (v) < = > 0.

If we express the @’s in terms of integrals this becomes

Y%%wmw:ﬁw?ﬁ@d<~>0

139 () ! ) PO2 — 1)¥(

The seventh proposition shows that when s and 7 are greater than zero, and 7 is
greater than 2, all the elements of the integral have the same sign.  Hence the
question is whether.

Pi (v) P! (v)
o TR
Therefore we have to arrange all the ;g E‘;) in descending order of magnitude,

and shall thereby obtain the non-zonal #’s in ascending order.
I wish first to show that these coefficients may to-a great extent be sorted by
considering the inequality.

Py (vy)
1) s (1/)

Pt (w,)

< = >P‘()

(s=1,2,8. .., t=1,223...,1)

Suppose, if possible, that whereas, for the ellipsoids defined by B, », v,,

Prow W) P (v _ P ()
Pro) S Y e T vy

Then there must be some value of 8 for which

Pi (vo) P (@) = P () Wit (vo)

for all values of » greater than v,
It is almost obvious that there is no one value of 8 which renders this equation
possible ; but consider for example the case of § = 2, ¢ == 0,

Now

>

s’ (v) = — BgPs (v) + Py* (v), Ps (v) = Py (v) + BgPy? (v).
1t we substitute this in the equation we find
Py (vo) Py (v) = Py (v) Py (vy).

This can only be satisfied by » = »;, and hence the hypothesis is negatived.
Similarly the assumption of other values of s and ¢ leads to an impossibility.
Thus we may consider the P functions in place of the 3 functions.
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]
[O]
[W¥]

Consider the inequality

Py (vy)

Py (v)

If the inequality is determined for any value of v, it is determined for all values.
Now when » is very large -

> =< I”H((”")) fors=1,2. - 1L

A A

OF

A

OF

D s — 2i! 2 s-l 1 — ZZ_’___H i
P = g ) =5 =1
Hence our inequality becomes
(= 9) P (o) > = < Py (1),

This inequality is of the same kind for all values of v, Now P/ (y,) involves the
factor (v, — 1)* and P! (»,) involves (y,* — 1):¢*V, Putting therefore v?=1-c¢,
the left-hand side involves € and the right €¢+". It follows that unless s is equal
to ¢ the left-hand side is greater than the right; but s is necessarily equal to ¢ — 1
at greatest.

Therefore Py (v) o P (vy)

Pi" (V) Pi‘H‘l (V) ’

Hence K’s with smaller s ave less than those with greater s.

It remains to discriminate between the two sorts of P-functions which occur in
ellipsoidal harmonic analysis ; that is to say we must determine

Ps* () P (vo)
ey =<
P P (v)
Since the 8 of “ Harmonies” is equal to 2%72 in the present notation, when 8
and «” are small we have by the formule of that paper
P (v) = P’ (v) + 3679,.P 2 (v) + $6%,-, (V) +...,
5 ( 1/ ’C 2 2 P 52
P () = 1 To )+ S oy, .op P )
When » is very great and «" very small 37 = P/, so it suffices to determine the
inequality
P () > = < Pi(w);
and this may be considered for any value of v, greater than unity. By taking v, very
large and &’ very small the inequality becomes
b 1 9 J— ¥
P—1)>=< <Vo~ - K> '
or 1 > = < k.
r2
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324 PROFESSOR G, H, DARWIN ON THE PEAR-SHAPED FIGURLE
But « < 1, hence the first sign holds true and

331(’30) P ()
3P (v) Pi(») ’
whernce . % < K2
Thus 1t follows that for order ¢

R <K!'<#*<K?. ... <H <K/,

The order of magnitude of these coefticients is therefore completely determined.
As confivmatory of the correctness of this result it may be mentioned that 1 find
that when y = 69° 50" and « = sin 73° 56/, '

Ty = 1765, K, = 2990, B2 = 4467, K2 = 4550, B’ = 5719, K = "5876.

When y =75 and x = sin 81° 4’ (another Jacobian cllipsoid) the numbers run
130, 224, 460, 465, 604, 614

We see that tor the harmonics of higher ovder the ellipsoid is more stable than it
was and for those of lower order less stable.

§ 7. The critical Jacobian Ellipsoid.

From a number of preliminary caleulations I saw reason to believe that the eritical
ellipsoid would be found within the region comprised between y = 69° 48 and
69° 50/, and sin™ k= 73° 52" and 73° 56,

If we write
k*sineycos oy (1 + & sin? )

/ bain? iy
.]‘.<'}/, Si]l—ql K) e} /j"jl ( 1 + K?}ﬂll"[(:(),%f)l) — <2F _ IC) K ,

1 — k'sin’y £ (1 — i sin® o)l

where the amplitudes of I and F are y and their moduli «, the existence of the
Jacobian ellipsoid is determined by

Sy, sin~t k) = 0.%
The coefficient of stability is

_ 35'% (Vo)_QB:; (vo) .
Pll (V()) Qll (VO)

Ty (y, sin k) =1

The formule for computing % are given in § 4.
The values of E and F are from LEGENDRES tables.

% See ‘Roy. Soc. Proc.,” vol. 41, p. 323, where the formula is reduced to a form convenient for

computation,
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o
N3]

Now I find
f(()'f)o 48’ 73° 52’) = + 000191 ; f(GQQ 507, 73° 52’) = +4 001319.
F(69° 487, 78° 56') = — 001186 ;  £(69° 50", 73° 56') = — 000031,
T, (69° 48", 73° 52) = + 001058 ; %, (69° 50", 78° 52') = — "000885.
%, (69° 487, 78° 56') = + 000655 ; K, (69° 50/, 73° 56') = — "000765.
By interpolation we get the following results :—
The Jacobian ellipsoid is given by
(y — 69° 48") — *59642 (sin~" x — 73° 52) - 33091 = 0.
The vanishing of the coefficient of stability is given by
(y — 69° 48') + 041625 (sin=" k — 78° 52/) — 10890 = 0,
In these equations the minute of arc is the unit.
Solving them I find
y = 69° 48997 = 62° 490,
sin~lk = 73° 547°225 = 73° 454"2.
With these values 1 find that the three axes a, 0, ¢, where abe = a® are

0 -
= 650659,
’

&

= 814975,

© = 1-885827.

¢

The last place of decimals in these is certainly doubtful.
The formula for o* is given in (35).

Now ¥ = B, () Qo (ve), k=cxsiny, P,(v) Qr) = «l.
Then since & = ¢ cos y, b = cA,
o _ 2WACoLY = rrg

E -

TR T seety
In this formula, F, y, A must correspond with values interpolated amongst those
used in obtaining the solution.
From this I find

p)

© = 1419990 = *14200.

2ap
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326 PROFESSOR G. H. DARWIN ON THE PEAR-SHAPED FIGURE

In the paper ou the Jacobian ellipsoid referred to above the moment of momentun
1s tabulated by means of u, where the moment of momentum is (4mp)ia’u. The
formula for p is given in (25) of that paper, and, modified to suit the 1)1esent
notation, is

po="1(Acosy) (1 + &) (47 p\)]

For the critical ellipsoid T find p = "389570.

The following table gives the numerical values for a number of Jacobian ellipsoids,
beginning with the initial one and terminating just beyond instability. The last line
gives the corresponding values for the critical ellipsoid.

Jacosr's Ellipsoids.™

i ‘ ‘ !
. L osin Tk, cos T'A. L afa. bja. ¢fa. o 2wp, P
! ‘ i
54 21 27, . 0 0 0 0 6977 1-1972 11972 ‘18712 30375
55 . . . . . 1% 144 L6997 1179 1-216 ‘18706 | 304
57 . . . . .| 348 284 . 696 1123 1279 ‘186 - +306
60. . . . . 49 7 40 54 6916 10454 1-3831 1812 3134
65 . . . . . 64 19 54 46 | 6765 9235 16007 | -1659 | 3407
0. . . . . 14 12 64 43 | 6494 8111 14899 . 1409 | 3920
65 49 .. T3 54 64 24 t 65066 81498 | 1-88583 | 14200 | 38957
E !

* 1 have been criticised with respect to my paper on Jacosr’s ellipsoid, from which these results are
oxtracted, by M. S. KrUGER (Nieuw Archief voor Wiskunde, Tweede Reeks, Derde Deel and
¢ Ellipsoidale Evenwichtsvormen,” &c., Thesis for Degree of Doctor, Leiden, J. W. van Leeuwen,
Hoogewoerd 89, 1896), because I wrote it in ignorance of certain previous work, especially of a paper
by Prana (¢ Ast. Nachr., 36, n. 851, ¢. 169). But I cannot but congratulate myself on my ignorance,
since it appears that PLANA gave a number of numerical results which were wholly wrong. A knowledge
of that paper would no doubt have caused me much further trouble.

My paper gives a number of solutions of the problem which I believe to be correct. Unfortunately
the methods of the paper are clumsy, and there are several mistakes. The formula for ? used in this
present paper, is much better than that given there.

The complicated formula on p. 325 is susceptible of reduction to a simple form, for on substituting for
v its approximate form (¢) we have simply

v =8 = }x?sin  cos o,
where o = 54° 21" 27",
The final numerical result was, however, nearly right, for I now find
sin *o = 1070260821 gip (y - 9),

whereas T had 9266528, The sin « is the same as the « used here.
The formula at the Lop of p. 326 which is reproduced as (22) on p. 828 Is, 1 think, illusory, for if in the
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In order to determine the question as to whether or not it is possible that %; = 0
should have another solution than that found in the next section, I have computed
the value of this coeflicient for the Jacobian ellipsoid y = 75° « = sin 81° 4*4, and
find it to be —6°627, From the manner in which the numbers in the computation
present themselves, it is obvious that for more elongated ellipsoids %, will always
remain negative, and will become numerically greater. I have therefore not thought
it necessary to seek for an algebraic proof that there is no second root of the
equation.

Very long Jacobian ellipsoids tend to become figures of revolution, and the coeffi-
cients of stability tend to assume the forms

_ R()QE)
PI@) Q@)

The forms of these functions are well known, and I think that fair approximations
to the incidences of the successive figures of bifurcation might be derived from the
vanishing of this expression.

For example

Plv)Q)} (V)-——‘%[v-— (* — 1) log <,, 1>j

[ 2

P, (v) Qu(v) = 44 [(351/ — 3002 + 3) log (” * 1/\ 5y (2102 — 11) (350% — 305° -+ 3)].

I have not, however, attempted to solve the equation found by equating these two
expressions to one another, |

Even when 7 = 3 and y = 69° 49’ (the critical Jacobian) this rough approximation
makes the coefficient of stability very small, but it is to be admitted that P! Q' and
P,Q, differ very sensibly from P'(v) Q,'(») and P;(v) @;(v), although in such a

way that the errors compensate one another.

first term we put y = 8 + Ix?sindcos 3 (as is clearly allowable in approximation) the term with coeffi-
cient «2 or sin %« disappears. This shows that it was necessary to proceed in the approximation as far as
x4 in order to obtain a result.

The methods of approximation adopted on pp. 326-7 are of doubtful propriety, but will, I think, lead to
nearly correct results, There is, however, a mistake towards the bottom of p. 327 which runs on to the
end. M. KRUGER correctly points out that the second line of formula (24) p. 329 should run

% cos % [él_r% log, cot (47 -1y). (A% + 3tan?y + tanty) - 3%~ 22 tan2y — I tan 4y].
sy

Lastly, on p. 335, line 13, for C = 0:3573, read C=0'5379; and on p. 336, line 7, for 13573, read
1:6379 ; and for % = 1696, read 0 = 4:65.
( a
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228 PROFESSOR G. H, DARWIN ON THE PEAR-SHAPED FIGURE

§ 8. The pear-shaped Figure of Equilibriwm.

By (21) the normal displacement 8n for the third zonal harmonic deformation may
be written

2/7

[0 = 7% = (3 — 4¢%) i — %y siny/]
g (1 — g sin®q) (2%Jcos by + o2/ A* + 227

8%36‘

subject to the condition

TQ Y

,_‘__[_g

2 2

= C".

Wi oW

+

o0

cos?

The expression has been arranged so that when z =19 = 0, z = ¢, we have dn = e.
Hence + ¢ and — e are the normal displacements at the stalk and blunt end of the
pear respectively.

In the section 7 = 0, this may be written

£Co8 vy 2 — g?)

on =

7% E(E — Psinty)t

The nodal points are given by j = 4 q = + 758056,

. . . /L .
In the section @ = 0, since &> = ¢ 430 , 1t may be written
AESy .

A (4 — 5 ) 2 (k% — *¢”)

C)D

T e
q? ? (¢F — k%P sin® )

on =re

The nodal points are given by c = :{:% = - "788986.

The section z = 0 is obviously another nodal line for all sections.

By means of these formulée it is easy to compute the normal displacements from the
surface of the critical Jacobian.

The figure opposite showing the three sections # =0, y =0, z=0, is drawn
from these formulee, the dotted line being the critical Jacobian and the firm line the
pear. The scale of the normal displacements is, of course, arbitrary.

Comparison with M. PoiNcari's sketch shows that the ﬁgure is considerably longer
than he supposed.

In this first approximation the positions of the nodal lines are independent of the
magnitude of ¢, and they lie so near the ends that it is impossible to construct an
exaggerated figure, for if we do so the blunt end acquires a dimple, which is absurd.
It might have been hoped that such an exaggeration would afford us some idea of the
mode of development of the pear.
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330 PROFESSOR G. H. DARWIN ON THE PEAR-SHAPED FIGURE

M. ScawARzscHILD has remarked® that it is not absolutely certain that the
principle of exchange of stability holds with reference to this figure, and that we
cannot feel absolutely certain that the pear is stable unless we can prove that the
moment of momentum is greater than in the critical Jacobian.

With reference to this objection, M. PoiNCARE writes to me as follows :—

“ Faisons croltre le moment de rotation, que jappellerai M. Deux hypothéses sont
possibles.

“ Ou bien pour M < M, (the moment of momentum of the Jacobian), nous aurons
une seule figure, stable, & savoir U'ellipsoide de Jacos, et pour M > M, trois figures,
une instable, ellipsoide, et deux stables (d’ailleurs égales entre elles), les deux figures
pyriformes.

“Ou bien pour M < M,, nous aurons trois figures d’équilibre, deux pyriformes
instables, une stable, U'ellipsoide, et pour M < M, une seule figure instable, I'ellipsoide—
auquel cas la masse fluide devrait se dissoudre par un cataclysme subit.

“Ily a donc & vérifier si pour les figures pyriformes, M > ou < M,.”

It seems very improbable that the latter can be the case; but this opinion is not a
proof. '

Since ® is stationary for the initial pear, a small change in the angular velocity
will certainly produce a great change in the figure of the pear. If this investigation
has, in fact, its counterpart in the genesis of satellites and planets, it seems clear that
the birth of a new body, although not cataclysmal, is rapid.

§ 9. Summary.

It is possible by the methods explained in my previous paper on * Harmonies” to
form rigorous expressions for the ellipsoidal harmonics of the third degree. Accordingly
in § 1 T proceed to form those functions. In § 2 the notation is changed with a view
to convenience in subsequent work, and for the sake of completeness the harmonics
of the first and second degrees are also given. In § 3 the corresponding solid
harmonics are expressed in rectangular co-ordinates ®, y, z. In § 4 T find the
Q-functions, the harmonic functions of the second kind, and express the results in
terms of the elliptic integrals K and F. It appears that both the P- and Q-functions
of the third degree of harmonics occur in three pairs which have the same algebraic
forms, and that in each pair one of them only differs from the other in the value of a
certain parameter. There is, lastly, a seventh function which stands by itself; this
last corresponds to the solid harmonic yz.

In § 5 the equations for Jacosr's ellipsoid are determined by the consideration that
the energy must be stationary, and the superficial value of gravity is found in terms
of the appropriate P- and Q-functions. I then proceed to find the additional terms

* «Die Poincarésche Theorie des Gleichgewichts,” ¢ Annalen der K. Sternwarte, Miinchen,’ Bd. II1.
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in the energy when the mass of fluid is subject to an ellipsoidal harmonic deformation.
This section is a paraphrase of M. PoiNncar#’s work, but the notation and manner of
presentation are somewhat different. The additional terms in the energy are shown
to involve a certain coefficient, which is called by M. PoiNcarf a coefficient of
stability. It is clear that when any coefficient vanishes we are at a point of bifurca-
tion, and the particular Jacobian ellipsoid for which it vanishes is also a member of
another series of figures of equilibrium.

In § 6 the principal properties of these coefficients, as established by M. PoiNcarg,
are enumerated. He has shown that the ellipsoid can bifurcate only into figures
defined by zonal harmonics; that it must do so for all degrees, and that the first
bifurcation occurs with the third zonal harmonic. The order of magnitude of the
coefficients of the several orders and of the same degree is determined. A numerical
result seems to indicate that as the ellipsoid lengthens, it becomes more stable as
regards deformations of the third degree and of higher orders, and less stable as
regards the lower orders of the same degree.

In § 7 the numerical solution of the vanishing of the coefficient corresponding to
the third zonal harmonic is found, and it is shown that the critical ellipsoid has its
three axes proportional to ‘65066, ‘81498, 188583, and that the square of the angular

9

velocity is given by i’f;: '14200. A short table is also given showing the march

of the axes of the Jacobian ellipsoids from their beginning on to instability at this
critical stage. The nature of the formula for the third zonal coeflicient of stability
seems to show that it can only vanish once—a point which it appears that
M. PoincarE found himself unable to prove rigorously.

A suggestion is made for the approximate determination of the bifurcations into
the successive zonal deformations, but no numerical results are given.

In § 8 the nature of the pear-shaped figure is determined numerically, and the
reader may refer to the figure above, where it is delineated. Tt will be seen to be
longer than was shown in M. PoiNcARE’s conjectural sketch.

If, as M. PoiNcarg suggests, the bifurcation into the pear-shaped body leads
onward stably and continuously to a planet attended by a satellite, the bifurcation into
the fourth zonal harmonic probably leads unstably to a planet with a satellite on
each side, that into the fifth to a planet with two satellites on one side and one on the
other, and so on.

The pear-shaped bodies are almost certainly stable, but a rigorous and conclusive
proof is wanting until the angular velocity and moment of momentum corresponding
to a given pear are determined. To do this further approximation is needed.

20U 2
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